Сердечная мышца: анатомические и физиологические особенности. Свойства сердечной мышцы Сердечная мышца является

💖 Нравится? Поделись с друзьями ссылкой

Сердечная мышца обеспечивает жизнедеятельность всех тканей, клеток и органов. Транспорт веществ в организме осуществляется благодаря постоянной циркуляции крови; она же обеспечивает и поддержание гомеостаза.

Строение сердечной мышцы

Сердце представлено двумя половинами - левой и правой, каждая из которых состоит из предсердья и желудочка. Левая половина сердца нагнетает а правая - венозную. Поэтому сердечная мышца левой половины значительно толще правой. Мышцы предсердий и желудочков разделены фиброзными кольцами, которые имеют атриовентрикулярные клапаны: двухстворчатый (левая половина сердца) и трехстворчатый (правая половина сердца). Данные клапаны во время сокращения сердца предупреждают возврат крови в предсердье. На выходе аорты и легочной артерии размещаются полумесячные клапаны, которые предупреждают возврат крови в желудочки во время общей диастолы сердца.

Сердечная мышца принадлежит к поперечнополосатой Поэтому эта мышечная ткань имеет те же свойства, что и скелетные мышцы. Мышечное волокно состоит из миофибрилл, саркоплазмы и сарколеммы.

Благодаря сердцу обеспечивается циркуляция крови по кровеносным сосудам. Ритмическое сокращение мышц предсердий и желудочков (систола) чередуется с ее расслаблением (диастола). Последовательная смена систолы и диастолы составляет цикл Сердечная мышца работает ритмично, что обеспечивается системой, проводящей возбуждение в разных отделах сердца

Физиологические свойства сердечной мышцы

Возбудимость миокарда — это способность ее реагировать на действия электрических, механических, термических и химических раздражителей. Возбуждение и сокращение сердечной мышцы наступает тогда, когда раздражитель достигает пороговой силы. Раздражения слабее порогового не эффективны, а сверхпороговые не изменяют силы сокращения миокарда.

Возбуждение мышечной ткани сердца сопровождается появлением Он укорачивается при учащении и удлиняется при замедлении сокращений сердца.

Возбужденная сердечная мышца на короткое время утрачивает способность отвечать на дополнительные раздражения или импульсы, поступающие из очага автоматии. Такая невозбудимость называется рефрактерностью. Сильные раздражители, которые действуют на мышцу в период относительной рефрактерности, вызывают внеочередное сокращение сердца — так называемую экстрасистолу.

Сократимость миокарда имеет особенности в сравнении со скелетной мышечной тканью. Возбуждение и сокращение в сердечной мышце длятся дольше, чем в скелетной. В сердечной мышце преобладают аэробные процессы ресинтеза Во время диастолы происходит автоматическое изменение одновременно в нескольких клетках в разных частях узла. Отсюда возбуждение распространяется по мускулатуре предсердий и достигает атриовентрикулярного узла, который считают центром автоматии ІІ порядка. Если выключить синоатриальный узел (наложением лигатуры, охлаждением, ядами), то через некоторое время желудочки начнут сокращаться в более редком ритме под влиянием импульсов, возникающих в атриовентрикулярном узле.

Проведение возбуждения в разных отделах сердца неодинаковое. Следует сказать, что у теплокровных животных скорость проведения возбуждения по мышечным волокнам предсердий составляет около 1,0 м/с; в проводящей системе желудочков до 4,2 м/с; в миокарде желудочков до 0,9 м/с.

Характерной особенностью проведения возбуждения в сердечной мышце является то, что потенциал действия, возникший в одном участке мышечной ткани, распространяется на соседние участки.

Сердечная мышца, как и всякая другая мышца, обладает рядом физиологических свойств: возбудимостью, проводимостью, сократимостью, рефрактерностью и автоматией.

· Возбудимость — это способность кардиомиоцитов и всей сердечной мышцы возбуждается при действии на нее механических, химических, электрических и других раздражителей, что находит свое применение в случаях внезапной остановки сердца. Особенностью возбудимости сердечной мышцы является то, что она подчиняется закону “все — или ничего”. Это значит, что на слабый, допороговой силы раздражитель сердечная мышца не отвечает, (т.е. не возбуждается и не сокращается) (“ничего”), а на раздражитель пороговой, достаточной для возбуждения силы сердечная мышца реагирует своим максимальным сокращением (“все”) и при дальнейшем увеличении силы раздражения ответная реакция со стороны сердца не изменяется. Это связано с особенностями строения миокарда и быстрым распространением по нему возбуждения через вставочные диски — нексусы и анастомозы мышечных волокон. Таким образом, сила сердечных сокращений в отличие от скелетных мышц не зависит от силы раздражения. Однако этот закон, открытый Боудичем, в значительной степени условен, так как на проявление данного феномена влияют определенные условия — температура, степень утомления, растяжимость мышц и ряд других факторов.

Стоит добавить, что он применим только по отношению к действию на сердце искусственного раздражителя. Боудич в эксперименте с вырезанной полоской миокарда обнаружил, что если ее ритмически раздражать электрическими импульсами одинаковой силы, то на каждое последующее раздражение мышца ответит большим сокращением до ее максимальной величины. Это явление получило название “лестницы Боудича”.

· Проводимость — это способность сердца проводить возбуждение. Скорость проведения возбуждения в рабочем миокарде разных отделов сердца неодинакова. По миокарду предсердий возбуждение распространяется со скоростью 0,8-1 м/с, по миокарду желудочков — 0,8-0,9 м/с. В атриовентрикулярной области на участке длиной и шириной в 1 мм проведение возбуждения замедляется до 0,02-0,05 м/с, что почти в 20-50 раз медленнее, чем в предсердиях. В результате этой задержки возбуждение желудочков начинается на 0,12-0,18 с позже начала возбуждения предсердий. Существует несколько гипотез, объясняющих механизм атриовентрикулярной задержки, но этот вопрос требует своего дальнейшего изучения. Однако эта задержка имеет большой биологический смысл — она обеспечивает согласованную работу предсердий и желудочков.


· Рефрактерность — состояние невозбудимости сердечной мышцы. Степень возбудимости сердечной мышцы в процессе сердечного цикла меняется. Во время возбуждения она теряет способность реагировать на новый импульс раздражения. Такое состояние полной невозбудимости сердечной мышцы называется абсолютной рефрактерностью и занимает практически все время систолы . По окончании абсолютной рефрактерности к началу диастолы возбудимость постепенно возвращается к норме — относительная рефрактерность . В это время (в середине или в конце диастолы) сердечная мышца способна отвечать на более сильное раздражение внеочередным сокращением — экстрасистолой. За желудочковой экстрасистолой, когда внеочередной импульс зарождается в атриовентрикулярном узле, наступает удлиненная (компенсаторная) пауза (рис.9.).

Рис. 9. Экстрасистола а и удлиненная пауза б

Она возникает в результате того, что очередной импульс, который идет от синусного узла, поступает к желудочкам во время их абсолютной рефрактерности, вызванной экстрасистолой и этот импульс или одно сокращение сердца выпадает. После компенсаторной паузы восстанавливается нормальный ритм сокращений сердца. Если дополнительный импульс возникает в синоатриальном узле, то происходит внеочередной сердечный цикл, но без компенсаторной паузы. Пауза в этих случаях будет даже короче обычной. За периодом относительной рефрактерности наступает состояние повышенной возбудимости сердечной мышцы (экзальтационный период) когда мышца возбуждается и на слабый раздражитель. Период рефрактерности сердечной мышцы продолжается более длительное время, чем в скелетных мышцах, поэтому сердечная мышца не способна к длительному титаническому сокращению.

Иногда отмечаются патологические режимы распространения возбуждения, при которых предсердия и желудочки возбуждаются самопроизвольно с высокой частотой и сокращаются неодновременно. Если эти возбуждения периодичны, то такую аритмию называют трепетанием, если они неритмичны —мерцанием. Как трепетание, так и мерцание желудочков вызывает наибольшую опасность для жизни.

· Сократимость . Сократимость сердечной мышцы имеет свои особенности. Сила сердечных сокращений зависит от исходной длины мышечных волокон (закон Франка-Старлинга). Чем больше притекает к сердцу крови, тем более будут растянуты его волокна и тем большая будет сила сердечных сокращений. Это имеет большое приспособительное значение, обеспечивающее более полное опорожнение полостей сердца от крови, что поддерживает равновесие количества притекающей к сердцу, и оттекающей от него крови. Здоровое сердце уже при небольшом растяжении отвечает усиленным сокращением, в то время как слабое сердце даже при значительном растяжении лишь немного увеличивает силу своего сокращения, а отток крови осуществляется за счет учащения ритма сокращений сердца. Кроме того, если по каким-либо причинам произошло чрезмерное сверх физиолочески допустимых границ растяжение сердечных волокон, то сила последующих сокращений уже не увеличивается, а ослабляется.

Сила и частота сердечных сокращений меняется и под действием различных нервно-гуморальных факторов без изменения длины мышечных волокон.

Особенностями сократительной деятельности миокарда является то, что для поддержания этой способности необходим кальций. В безкальциевой среде сердце не сокращается. Поставщиком энергии для сокращений сердца являются макроэргические соединения (АТФ и КФ). В сердечной мышце энергия (в отличие от скелетных мышц) выделяется, главным образом, в аэробную фазу, поэтому механическая активность миокарда линейно связана со скоростью поглощения кислорода. При недостатке кислорода (гипоксемия) активируются анаэробные процессы энергетики, но они только частично компенсируют недостающую энергию. Недостаток кислорода отрицательно влияет и на содержание в миокарде АТФ и КФ.

В сердечной мышце, имеется так называемая атипическая ткань, образующая проводящую систему сердца (рис. 10.).

Эта ткань имеет более тонкие миофибриллы с меньшей поперечной исчерченностью. Атипические миоциты более богаты саркоплазмой. Ткань проводящей системы сердца более возбудима и обладает резко выраженной способностью к проведению возбуждения. В некоторых местах миоциты этой ткани образуют скопления или узлы. Первый узел располагается под эпикардом в стенке правого предсердия, вблизи впадения полых вен — синоатриальный узел .

Рис. 10. Проводящая система сердца:

а - синоатриальный узел; б - предсердно-желудочковый узел; в - пучок Гиса; г - волокна Пуркинье.

Второй узел располагается под эпикардом стенки правого предсердия в области атриовентрикулярной перегородки, разделяющей правое предсердие от желудочка, и называется предсердно-желудочковым (атриовентрикулярным) узлом . От него отходит пучок Гиса, разделяющийся на правую и левую ножки, которые по отдельности идут в соответствующие желудочки, где они распадаются на волокна Пуркинье. Проводящая система сердца имеет непосредственное отношение к автоматии сердца.

Автоматия сердца — это способность ритмически сокращаться под влиянием импульсов, зарождающихся в самом сердце без каких-либо раздражений. Автоматию сердца можно наблюдать на удаленном, и помещенном в раствор Рингера, сердце лягушки. Явление автоматии сердца было известно очень давно. Его наблюдали Аристотель, Гарвей, Леонардо Да Винчи.

Долгое время в объяснении природы автоматии существовало две теории — нейрогенная и миогенная. Представители первой теории считали, что в основе автоматии лежат нервные структуры сердца, а представители второй теории связывали автоматию со способностью к ней мышечных элементов.

Взгляды на автоматию получили новые направления в связи с открытием проводящей системы сердца. В настоящее время способность к автоматической генерации импульсов в настоящее время связывают с особыми Р-клетками, входящими в состав синоатриального узла. Многочисленными и разнообразными опытами (Станниус—методом наложения лигатур, Гаскел - ограниченным охлаждением и нагреванием разных участков сердца), затем исследованиями с регистрацией электрических потенциалов было доказано, что главным центром автоматии 1 порядка, датчиком, водителем (пейсмекером) ритма сердечных сокращений является синоатриальный узел, так как в Р-клетках этого узла отмечается наибольшая скорость диастолической деполяризации и генерации потенциала действия, связанного с изменением ионной проницаемости клеточных мембран.

По удалению от этого узла способность проводящей системы сердца к автоматии уменьшается (закон градиента убывающей автоматии, открытый Гаскеллом). Исходя из этого закона, атриовентрикулярный узел обладает меньшей способностью к автоматии (центр автоматии второго порядка), а остальная часть проводящей системы является центром автоматии третьего порядка.

В нормальных условиях функционирует только автоматия синоатриального узла, а автоматия других отделов подавлена более высокой частотой его возбуждений. Это было доказано Станниусом методом наложения лигатур на разные отделы сердца лягушки. Так, если у лягушки наложить первую лигатуру, отделив венозный синус от предсердий, то сокращения сердца временно прекратятся. Затем через некоторое время или сразу после наложения второй лигатуры на предсердно-желудочковый узел начнутся сокращения предсердий или желудочка (в зависимости от того, как ляжет лигатура и куда отойдет узел), но во всех случаях эти сокращения будут иметь более редкий ритм ввиду меньшей способности к автоматии атриовентрикулярного узла.

Таким образом, импульсы вызывающие сокращения сердца, первоначально зарождаются в синоатриальном узле. Возбуждение от него распространяется по предсердиям и доходит до атриовентрикулярного узла, далее через него по пучку Гиса к желудочкам. При этом возбуждение от синоатриального узла к атриовентрикулярному по предсердиям передается не радиально, как это представлялось раньше, а по наиболее благоприятному, предпочтительному пути, т.е. по клеткам очень сходным с клетками Пуркинье.

Волокна проводящей системы сердца своими многочисленными разветвлениями соединяются с волокнами рабочего миокарда. В области их контакта происходит задержка передачи возбуждения в 30 мс, что имеет определенное функциональное значение. Одиночный импульс, пришедший раньше других по отдельному волокну проводящей системы, может вообще не пройти на рабочий миокард, а при одновременном приходе нескольких импульсов они суммируются, что облегчает их переход на миокард.

Сердце представляет собой две половинки (левую и правую), каждая из которых в свою очередь состоит из предсердия и желудочка. Левая половинка сердца производит нагнетание артериальной крови, а правая – венозной. В связи с этим, сердечная мышца левой половины значительно больше и толще правой. Мышцы предсердий и желудочков разделены между собой фиброзными кольцами, имеющими специальные клапаны: двухстворчатый - у левой сердечной половины, и трехстворчатый – у правой. Эти клапаны, в момент сердечных сокращений не допускают возврата крови в предсердие. На выходе из аорты и легочной артерии размещаются клапаны, напоминающие визуально полумесяц. Они не допускают возврата крови в желудочки в период общей диастолы сердца.

Сердечная мышца относится к поперечнополосатой мышечной ткани. Именно поэтому она имеет те же самые свойства, что и мышцы скелета. Волокна, из которого они состоят это в основном - сарколеммы, миофибриллы и саркоплазмы.

Посредством сердца обеспечивается циркуляция крови по кровеносным сосудам. Ритмичное сокращение мышц предсердий, а также желудочков, чередуется с их расслаблением. Периодичная смена систолы и диастолы и составляет основной цикл работы сердца. Мышца сердца работает достаточно ритмично, и обеспечивается это специальной системой возбуждения, находящейся в разных сердечных отделах.

Физиологические особенности сердечной мышцы

Возбудимостью миокарда называется способность реагировать на воздействие термических, электрических, химических или механических раздражителей. Сокращение и возбуждение сердечной мышцы происходит в тот момент, когда раздражитель достигает своей максимальной силы. Возбуждения низкого воздействия не эффективны, а чрезмерные - не изменяют силы сокращения миокарда.

Возбужденная сердечная мышца на короткий промежуток времени утрачивает способность реагировать, на поступающие дополнительно раздражители и импульсы. Такая реакция называется рефрактерностью. Раздражители, которые с силой воздействуют на мышцу в период ее рефрактерности, провоцируют внеочередное сокращение сердца, называемое экстрасистолой.

В различных отделах сердца скорость возбуждения отличается. Характерной особенностью процесса возбуждения в сердечной мышце является ее потенциал действия, возникая в одном участке мышечной ткани, он постепенно распространяется и на соседние ее участки.

К основным свойствам сердечной мышцы относятся: 1) автоматия, 2) возбудимость, 3) проводимость и 4) сократимость.

АВТОМАТИЯ

Способность к ритмическому сокращению без всяких видимых раздражений под влиянием импульсов, возникающих в самом органе, является характерной особенностью сердца. Это свойство называется автоматизмом. Так как импульсы появляются в мышечных волокнах, то говорят о миогенной автоматии.

Существование миогенной автоматии позволяет возбуждаться и сокращаться сердечной мышце при перерезке всех идущих к ней внешних нервов и даже при полном извлечении сердца из тела. При создании необходимых условий, способность к сокращению, без действия внешних раздражителей, сохраняется в течение нескольких часов и даже суток. Ритмические сокращения зарегистрированы у человеческого эмбриона на ранних стадиях развития (18-20 день).

Но способностью к автоматии в сердце обладают не все мышечные волокна, а только атипическая мышечная ткань.

Природа автоматии до сих пор до конца не выяснена. У высших позвоночных возникновение импульсов связано с функцией атипических мышечных клеток - миоцитов -пейсмекеров , заложенных в узлах сердца.

Атипическая ткань в сердце млекопитающих животных локализуется в областях, гомологичных венозному синусу и атриовентрикулярной области холоднокровных.

Первый узел проводящей системы расположен в месте впадения полых вен в правое предсердие. Имеет несколько названий: синуснопредсердный, синоатриальный, синусный, синусноаурикулярный, Кейс-Флека (Кис-Фляка, Кейт-Флака) . Он является главным центром автоматии сердца -пейсмекером (водителем ритма) первого порядка .

От данного узла возбуждение распространяется к рабочим клеткам миокарда, как диффузно, так и по специализированным пучкам или трактам (Торела, Венкебаха, Кента и т.д.).

В частности к левому предсердию возбуждение направляется по пучку Бахмана, а к предсердно-желудочковому узлу - по пучку Кис-Фляка.

Далее возбуждение достигает второго узла -предсердно-желудочкового (атриовентрикулярного, Ашоффа-Товара) . Он расположен в толще сердечной перегородки на границе предсердий и желудочков. Узел состоит из трех частей, обладающих собственной частотой возбуждения: 1 -верхней предсердной и 2-средней и 3 -нижней желудочковых. Этот узел является пейсмекером второго порядка . В норме возбуждение в данном узле никогда не генерируется, узел лишь проводит импульсы от синоатриального узла, причем в норме возбуждение проходит только в одном направлении. Ретроградное (обратное) проведение импульсов невозможно.

При прохождении возбуждения через предсердно-желудочковый узел импульсы задерживаются на 0,02-0,04 с. Это явление получило название атриовентрикулярной задержки . Ее функциональное значение состоит в том, что за время задержки успевает завершиться систола предсердий. За счет этого достигается координированная работа предсердий и желудочков.

В настоящее время предполагается, что причиной атриовентри­кулярной задержки может быть: истончение пучков Кис-Флака при подходе к атриовентрикулярному узлу. Существует также предположе­ние, что передача возбуждения на атриовентрикулярный узел осу­ществляется через химический синапс.

Третий уровень расположен в пучке Гиса и волокнах Пуркинье. Пучок Гиса берет начало от предсердно-желудочкового узла (длина 1-2 см) и образует две ножки, одна из которых идет к левому, дру­гая - к правому желудочку. Эти ножки ветвятся на более тонкие проводящие пути, которые в свою очередь заканчиваются волокнами Пуркинье под эндокардом. Считается, что между этими волокнами и типичной мускулатурой имеются так называемые переходные клетки. Они непосредственно и осуществляют контакт с рабочими клетками миокарда и обеспечивают одновременную передачу возбуждения с про­водящей системы сердца на рабочую мускулатуру.

Центры автоматии, расположенные в проводящей системе желу­дочков, носят название пейсмекеров третьего порядка . Они также, как и атриовентрикулярный узел, никогда в норме не вступают в работу, а предназначены лишь для проведения импульсов, идущих от синоатриального узла. Таким образом, возбуждение по ножкам пучка Гиса направляется к верхушке сердца и оттуда по разветвлениям но­жек и волокнам Пуркинье возвращается к основанию сердца. В ре­зультате этого сокращение сердца в целом определяется в опреде­ленной последовательности: сначала сокращаются предсердия, затем верхушки желудочков и наконец их основания.

Итак, нижележащие водители ритма находятся в соподчиненном положении и в сердце существует так называемый градиент автома­тии , который был открыт в опытах Станиуса (описаны в практических руководствах по физиологии), а сформулирован Гаскеллом.

Градиент автоматии выражается в убывающей способности к ав­томатии различных структур проводящей системы по мере их удаления от синусно-предсердного узла. В синусно-предсердном узле число разрядов составляет в среднем 60-80 имп/мин у взрослого человека, в предсердно-желудочковом - 40-50, в клетках пучка Гиса - 30-40, в волокнах Пуркинье - 20-30 имп/мин.

Таким образом, в сердце существует определенная иерархия центров автоматии, что позволило В. Гаскеллу сформулировать прави­ло, согласно которому степень автоматии отдела тем выше, чем он ближе расположен к синусно-предсердному узлу.

В том случае, когда в пейсмекере первого порядка не возника­ет возбуждение или блокируется его передача, роль водителя ритма берет на себя пейсмекер второго порядка через 30-40 сек (асисто­лия) и желудочки начинают сокращаться в ритме атриовентрикулярно­го узла. При невозможности передачи возбуждения к желудочкам они начинают сокращаться в ритме пейсмекеров третьего порядка.

В норме частоту активности миокарда всего сердца в целом оп­ределяет синусно-предсердный узел и подчиняет себе все нижележа­щие центры автоматии, навязывая им свой ритм. Явление, при кото­ром структуры с замедленным ритмом генерации потенциалов усваивают более частый ритм других участков проводящей системы, называют усвоением ритма. В случае, когда синоатриальный узел повреждается и при этом человеку оказывают своевременную квалифицированную медицинскую помощь (больному вживляют стимулятор, задающий самостоятельно ритм для работы сердца) можно сохранить жизнь пациенту.

При поперечной блокаде предсердия и желудочки сокращаются каждый в своем ритме. Нескоординированная работа водителей ритма ухудшает основную функцию сердца - нагнетательную. Повреждение водителей ритма ведет к полной остановке сердца.

Сердце по праву — самый главный орган человека, ведь оно перекачивает кровь и отвечает циркуляцию по организму растворенного кислорода и других питательных веществ. Его остановка на несколько минут может вызвать необратимые процессы, дистрофию и отмирание органов. По этой же причине болезни и остановка сердца являются одной из самых распространенных причин смертности.

Какой тканью образовано сердце

Сердце – полый орган размером примерно с кулак человека. Оно практически полностью образовано мышечной тканью, поэтому многие сомневаются: сердце – это мышца или орган? Правильный ответ на этот вопрос – орган, образованный мышечной тканью.

Сердечная мышца называется миокард, ее строение существенно отличается от остальной мышечной ткани: образована она клетками-кардиомиоцитами. Сердечная мышечная ткань имеет поперечнополосатую структуру. В ее составе есть тонкие и толстые волокна. Микрофибриллы – скопления клеток, которые образуют мышечные волокна, собраны в пучки разной длины.

Свойства сердечной мышцы – обеспечение сокращения сердца и перекачивание крови .

Где находится сердечная мышца? Посередине, между двумя тонкими оболочками:

  • Эпикардом;
  • Эндокардом.

На долю миокарда приходится максимальное количество массы сердца.

Механизмы, которые обеспечивают сокращение:

В цикле работы сердца выделяют две фазы:

  • Относительную, при которой клетки реагируют на сильные раздражители;
  • Абсолютную – когда на протяжении определенного промежутка времени мышечная ткань не реагирует даже на очень сильные раздражители.

Механизмы компенсации

Нейроэндокринная система защищает сердечную мышцу от перегрузок и помогает сохранить здоровье. Она обеспечивает передачу «команд» миокарду, когда нужно увеличить частоту сердечных сокращений.

Причиной для этого может стать:

  • Определенное состояние внутренних органов;
  • Реакция на условия окружающей среды;
  • Раздражители, в т. ч. нервные.

Обычно в этих ситуациях в большом количестве вырабатывается адреналин и норадреналин, чтобы «уравновесить» их действие, требуется увеличение количества кислорода. Чем чаще ЧСС, тем больший объем насыщенной кислородом крови разносится по организму.

Особенности строения сердца

Сердце взрослого человека весит примерно 250-330 г. У женщин размер этого органа меньше, как и объем перекачиваемой крови.

Состоит оно из 4 камер:

  • Двух предсердий;
  • Двух желудочков.

Через правую часто сердца проходит малый круг кровообращения, через левый – большой. Поэтому стенки левого желудочка обычно больше: чтобы за одно сокращение сердце могло вытолкнуть больший объем крови.

Направление и объем выталкиваемой крови контролируют клапаны:

  • Двухстворчатый (митральный) – с левой стороны, между левым желудочком и предсердием;
  • Трехстворчатый – с правой стороны;
  • Аортальный;
  • Легочный.

Патологические процессы в сердечной мышце

При небольших сбоях в работе сердца включается компенсаторный механизм. Но нередки состояния, когда развивается патология, дистрофия сердечной мышцы.

К этому приводят:

  • Кислородное голодание;
  • Потеря мышечной энергии и ряд других факторов.

Мышечные волокна становятся тоньше, а недостаток объема заменяется фиброзной тканью. Дистрофия обычно возникает «в связке» с авитаминозами, интоксикациями, анемией, нарушениями в работе эндокринной системы.

Наиболее частыми причинами такого состояния являются:

  • Миокардит (воспаление сердечной мышцы);
  • Атеросклероз аорты;
  • Повышенное артериальное давление.

Если болит сердце: наиболее частые заболевания

Сердечных заболеваний довольно много, и не всегда они сопровождаются болью именно в этом органе.

Часто в этой области отдаются болевые ощущения, возникающие в других органах:

  • Желудке;
  • Легких;
  • При травме грудной клетки.

Причины и характер боли

Болевые ощущения в области сердца бывают:

  1. Острыми , пронизывающими, когда человеку больно даже дышать. Они указывают на острый сердечный приступ, инфаркт и другие опасные состояния.
  2. Ноющая возникает как реакция на стресс, при гипертонии, хронических заболеваниях сердечнососудистой системы.
  3. Спазм , который отдает в руку или лопатку.


Часто боль в сердце связана с:

  • Эмоциональными переживаниями.
  • Но нередко возникает и в состоянии покоя.

    Все боли в этой области можно разделить на две основные группы:

    1. Ангинозные, или ишемические – связаны с недостаточным кровоснабжением миокарда. Часто возникают на пике эмоциональных переживания, также при некоторых хронических заболеваниях стенокардии, гипертонии. Характеризуется ощущением сдавливания или жжения разной интенсивности, часто отдает в руку.
    2. Кардиологические беспокоят пациента практически постоянно . Носят слабый ноющий характер. Но боль может становиться резкой при глубоком вдохе или физических нагрузках.


    Рассказать друзьям